

# An Introduction to Useful Statistics When Clinicians are Reading the Medical Literature

Alan Barkun, MD,CM, FRCP(C), FACP, FACG, AGAF, MSc (Clinical Epidemiology) Chairholder, Douglas G. Kinnear Chair in Gastroenterology Professor of Medicine McGill University and the McGill University Health Centre Montreal, QC

# Aim / Disclaimer

- I am NOT a statistician!
- I did not really want to present this talk to you but was coerced into doing so (although I did volunteer for it)
- My aim is NOT to make statisticians out of you (especially since I am not one myself)

My aim is to:

HELP YOU MAKE SENSE OF THE EVER-INCREASING VOLUME OF PUBLISHED LITERATURE AND SEEMINGLY COMPLEX NATURE OF THE STATISTICS THAT ARE USED TO UNDERSTAND RESULTS - I will stick to a few <u>selected</u> concepts -

# Outline

- The role of statistics: Inferential testing and sample distributions; choosing the correct inferential test
- Hypothesis testing: Significance, statistical power, types I and II errors
- Probabilities vs Odds ratios
- Absolute and relative risks; number needed to treat/harm/screen
- Diagnostic testing, ROC analysis
- Confounding and adjusting for confounding
- Meta-analyses





# **Confidence Intervals**

Comparison of Interpretation of Confidence intervals 2 treatments: Difference in response Null value CI 4 rates between Drug X and Drug Y Keep doing things the same way! Range of clinical indifference Nul hypothesis is no difference between Sample size too small? the 2 Difference = 0 Range of clinical indifference Eg: X 20% (13-32%) and Statistically significant but no Y 30% (25-45%), practical significance Range of clinical indifference but clinically significant difference is also relevant - if for eg 5% or 20% Statistically significant and practical significance Range of clinical indifference 44 https://www.hing.com/images/search/view=datailV2&creid=PMSeZrTb&rid=4BA10E6AD661D0820C10242716A3944D8CBC31B5&thid=OIP.PMSeZrTbWjN0a8OrPjr\_BwHaTj&rmediaant=https%3d%2f%2fmage1.stide 2]2735251%2finterpretation-of-confidence-intervals2Ljpg&cdnurt=https%3d%2f%2finkajngRaw&expb=768&expw =1024&q=confidence+intervals+interpretation&simid=**607999401620627305**&ck=C3C3D0CDC270D5065AC39510E8C4C58C&selectedIndex=9&FORM=IRPRST&ajaxchist=0

# The sample distribution

- The sample distribution may be considered as the distribution of the statistic for all possible samples from the same population of a given sample size
- Making assumptions about the "studied population distribution" as a sample of the "whole population", you can make assumptions and adopt certain formulas when performing inferential testing statistics
- This decision also depends on a number of additional factors

# **Choosing the correct test – Is there a difference**





# **Hypothesis testing**

- The statistical practice of hypothesis testing is widespread
- Hypothesis testing:
  - the statement of a null hypothesis (Eg: the study drug is no better than placebo or control drug)
  - the null hypothesis is either true or false
- Making a statistical decision always involves uncertainties, so the risks of making these errors are unavoidable in hypothesis testing
- There are two kinds of errors, which by design cannot be avoided as a result

# Significance value and type I error

- If your results show statistical significance, that means they are very unlikely to occur if the null hypothesis is true
- Alpha (α) is the significance value which is typically set at 0.05, this is the cut off at which we accept or reject the null hypothesis. Making α smaller (α = 0.1) makes it harder to reject the H0
- Interpretation of P<0.05 would be: drug X > drug Y 19 out of 20 times you would run the same study
- In this case, you would reject your null hypothesis; but sometimes, this may actually be a Type I error (find a difference when in fact there is none)

### Statistical power and type II error

- If your findings do not show statistical significance, they have a high chance of occurring if the null hypothesis is true
- The statistical power of a study (1-β) is the probability of correctly rejecting the null hypothesis (when the null hypothesis is not true)
- The adopted statistical power is usually 80% or 90%
- Therefore, you fail to reject your null hypothesis; but sometimes, this may be a Type II error - so a 10-20% chance of falsely concluding that Drug B is no different than drug A
- The statistical power increases with effect size and sample size

| Type I and Type II errors |                                   |                                     |                                     |  |  |  |  |
|---------------------------|-----------------------------------|-------------------------------------|-------------------------------------|--|--|--|--|
|                           |                                   | TRUTH                               |                                     |  |  |  |  |
|                           |                                   | Null hypothesis<br>is TRUE          | Null hypothesis<br>is FALSE         |  |  |  |  |
| STUDY<br>FINDING          | Reject null<br>hypothesis         | Type I Error<br>(False positive)    | Correct outcome!<br>(True positive) |  |  |  |  |
|                           | Fail to reject<br>null hypothesis | Correct outcome!<br>(True negative) | Type II Error<br>(False negative)   |  |  |  |  |







# **Probability - OR and RR**

- OR are numerically different from the RR (even if they both compare the same risk between the same group), the relation is nonlinear
- OR and RR are similar when the event is rare in the control group
  - RR=0.15 the intervention is reduced the risk by 85%
  - OR=0.15 for every 15 persons who experience the event in the treatment group, 100 subjects will experience the event in the control group

You may also hear about Hazard ratio (HR) which is a measure of an effect of an intervention on an outcome of interest over time. Hazard ratio is reported most commonly in time-to-event analysis or survival analysis

Rosner – Fundamental in biostatistics

# Probability - OR and RR

- We use OR in 2 principal situations
  - In case-control studies (subjects with the outcome of interest are matched with a control group who do not) - where the absolute risk (or relative risk) cannot be estimated
  - In logistic regression analyses (models the probability of an event/outcome existing such as success/failure by adjusting for independents variables) where OR are generated as part of the analysis



# Absolute Risk vs Relative Risk



# Number Needed to Treat / Harm

- The Number needed to Treat (NNT) is simply the inverse of the ARR; can be calculated by dividing 100 by the ARR in %
- NNT = 100/ARR
- Note that this is useful if only calculated for a statistically significant difference, and that too has a confidence range
- May be especially useful when explaining to patients

#### Other closely related entities:

- Number Needed to Harm (NNH) (100/AR increase)
- Number Needed to Screen (NNS) (100/ARR)

Vaezi, Gastro, 2017

# PPI side effects... if in fact they are causally related, which most are NOT!...

| able 3. Absolute and RRs for Adverse Effects Associated With Long-Term PPIs                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                     |                                                                                             |                                                                                                                                                                                                              |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Potential Adverse Effect                                                                                                                                                                                                                                                                                                                                                                                       | Relative Risk                                                                                                                                                                                                                                                                              | Reference for<br>Risk Estimate                                                                                                                                                                                                      | Reference for<br>Incidence Estimate                                                         | Absolute Excess Risk                                                                                                                                                                                         |  |  |  |
| Chronic kidney disease <sup>a</sup><br>Dementia <sup>b</sup><br>Bone fracture <sup>c</sup><br>Myocardial infarction<br>Smali intestinal bacterial overgrowth<br><i>Campylobacter or Salmoneila</i> infection<br>Spontaneous bacterial peritonitis <sup>d</sup><br><i>Clostridium difficile</i> infection <sup>e</sup><br>Pneumonia<br>Micronutrient deficiencies <sup>f</sup><br>Gastrointestinal malignancies | 10% to 20% increase<br>4% to 80% increase<br>30% to 4-fold increase<br>No association in RCTs<br>2-fold to 8-fold increase<br>2-fold to 8-fold increase<br>50% to 3-fold increase<br>No risk to 3-fold increase<br>No association in RCTs<br>60% to 70% increase<br>No association in RCTs | Lazarus et al <sup>48</sup><br>Haenisch et al <sup>90</sup><br>Yang et al <sup>27</sup><br>Lo et al <sup>91</sup><br>Bavishi et al <sup>26</sup><br>Xu et al <sup>95</sup><br>Furuya et al <sup>95</sup><br>Lam et al <sup>97</sup> | Lazarus et al <sup>48</sup><br>Haenisch et al <sup>90</sup><br>Yang et al <sup>27</sup><br> | 0.1% to 0.3% per patiently<br>0.7% to 1.5% per patiently<br>0.1% to 0.5% per patiently<br>Unable to calculate<br>0.3% to 0.2% per<br>3% to 16% per p<br>0% to .09% per patiently<br>0% to 0.4% per patiently |  |  |  |

NNH = 1 in 100-1,500 (need to take PPI for 1 possible s/e vs NNT = 1 in 10-20 for benefit in an approved indication

# **Diagnostic testing**

- Diagnostic testing applies to everything a physician does in order to diagnose a disease or make a clinical decision (*i.e.*: diagnosis).
- From a statistical point of view
  - the clinical decision-making process is based on probabilities
  - the goal of a diagnostic test is to move the estimated probability of disease / event toward either end of the probability scale (i.e., "0" when ruling out/ excluding disease, and "1" when ruling in / confirming a disease / event)

|               | Gold or refe         | rence standard       |
|---------------|----------------------|----------------------|
|               | Disease              | No Disease           |
| Test Positive | A<br>True positives  | B<br>False positives |
| est Negative  | C<br>False negatives | D<br>True negatives  |

# **Diagnostic testing – Sensitivity**

|               | Disease         | No Disease      |
|---------------|-----------------|-----------------|
| Test Positive | А               | В               |
|               | True positives  | False positives |
| Test Negative | С               | D               |
|               | False negatives | True negatives  |
|               |                 |                 |

Sensitivity is the probability that an individual with the disease of interest has a positive test (expressed in %)

Sensitivity = a/(a+c)

| Diagnostic | testing - | - Specificity |
|------------|-----------|---------------|
|------------|-----------|---------------|

|               | Disease         | No Disease      |
|---------------|-----------------|-----------------|
| Test Positive | А               | В               |
|               | True positives  | False positives |
| Test Negative | С               | D               |
|               | False negatives | True negatives  |
|               |                 |                 |

Specificity is the probability that an individual without the disease of interest has a negative test (expressed in %)

Specificity = d/(b+d).





Accuracy is the probability that the diagnostic test yields the correct determination with regards to presence of the disease

Accuracy= (a+d)/(a+b+c+d)

# Diagnostic testing – Positive Predictive Value



Positive Predictive Value (PV+) is the probability of disease in an individual with a positive test result

Positive Predictive Value: a/(a+b)

# **Diagnostic testing – Negative Predictive Value**

|               | Disease              | No Disease           |
|---------------|----------------------|----------------------|
| Test Positive | A<br>True positives  | B<br>False positives |
| Test Negative | C<br>False negatives | D<br>True negatives  |

**Negative Predictive Value** (PV - ) is the probability of not having the disease when the test result is negative

Negative Predictive Value : d/(c+d)

# **Diagnostic testing – Prevalence**

|               | Disease         | No Disease      |
|---------------|-----------------|-----------------|
| Test Positive | A               | В               |
|               | True positives  | False positives |
| Test Negative | С               | D               |
| -             | False negatives | True negatives  |
|               |                 |                 |

Prevalence is the probability of having the disease, also called the "prior probability" of having the disease

Prevalence: (a+c)/(a+b+c+d)

| Stadies,<br>Characteristic<br>Characteristic<br>Characteristic<br>Characteristic<br>Characteristic<br>Characteristic<br>Characteristic<br>Characteristic<br>Characteristic<br>No.         Participants,<br>Sensitivity, %<br>(95% C1)         Specificity, %<br>(95% C1)         Positive<br>Likelihood<br>(95% C1)         Negative<br>Diagnostic<br>(95% C1)         Diagnostic<br>Odds Ratio<br>(95% C1)         Positive<br>Value, %         Negative<br>Predictive<br>Value, %           Cut off 15 <sup>a</sup> 4         3274         93.0 (63.0-99.0)         91.0 (90.0-92.0)         10.2 (8.1-12.8)         0.08 (0.01-0.53)         130.0 (16.0-1057.0)         6.8         99.9           Cut off 15-25 <sup>a</sup> 2         1167         NA <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Studies,<br>No.         Participants,<br>No.         Specificity, %<br>(95% C1)         Positive<br>(95% C1)         Negative<br>Likelihood<br>(95% C1)         Diagnostic<br>Od5 Ratio<br>(95% C1)         Positive<br>Value, %         Negative<br>Predictive<br>Value, %           Characteristic<br>Colorectal Carner         (95% C1)         95% C1)         (95% C1)         (9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Used for the Diagr         | of Result<br>nosis of ( | ts From Subgr<br>Colorectal Car | oup Analyses De<br>Icer or Advanced | pending on Cuto<br>Neoplasia | ff Value, Type of                           | FIT and Number of                           | of FIT Samples                       |                                    |                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------|---------------------------------|-------------------------------------|------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------|------------------------------------|------------------------------------|
| Colorectal Cancer         Interview of the section of | Colorectal Cancer:         Sectore of the sectore of th | Characteristic             | Studies,<br>No.         | Participants,<br>No.            | Sensitivity, %<br>(95% CI)          | Specificity, %<br>(95% CI)   | Positive<br>Likelihood<br>Ratio<br>(95% CI) | Negative<br>Likelihood<br>Ratio<br>(95% CI) | Diagnostic<br>Odds Ratio<br>(95% CI) | Positive<br>Predictive<br>Value, % | Negative<br>Predictive<br>Value, % |
| Cutoff 15 <sup>2</sup> 4         3274         93.0 (30.99.9)         91.0 (90.90.2)         102 (81.12.8)         0.80 (01-05.3)         13.0 (16.01057)         6.8         99.9           Cutoff 152 <sup>50</sup> 4         2539         90.0 (73.0-9)         94.0 (91.0-60)         15.1 (9.5.2.3)         0.07 (00.2-0.3)         10.03 (0.60.1057)         12.3         99.9           Cutoff 152 <sup>50</sup> 2         1167         N <sup>A</sup> N <sup>A</sup> N <sup>A</sup> N <sup>A</sup> N <sup>A</sup> Quanitative FIT         6         43.02         94.0 (73.0-90)         91.0 (90.0-90)         10.7 (8.1-12.0)         0.07 (0.01-0.3)         155.0 (55.0 15.0 0.00)         7.8         99.9           Qualitative FIT         1         572         N <sup>A</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cut off 15 <sup>3</sup> 4         3274         93.0 (83.0+90)         91.0 (90.0+20)         10.2 (8.1+2.2.8)         0.80 (0.01-0.53)         13.0 (1.6.0+105.0)         6.8         99.9           Cut off 1-52 <sup>56</sup> 4         2539         93.0 (73.0+9)         94.0 (91.0+06.0)         15.1 (9.5-2.3)         0.07 (0.02-0.3)         10.0 (3.0-105.0)         12.3         99.9           Cut off 1-52 <sup>56</sup> 2         1167         Na <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Colorectal Cancer          |                         |                                 |                                     |                              |                                             |                                             |                                      |                                    |                                    |
| Chronic Decemposities         Second                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cut off 15-25°         4         2530         93.0 (73.0-99)         94.0 (91.0-60)         15.1 (95.230)         0.70 (02.0-32)         209.0 (36.0-1195)         12.3         99.9           Cut off 25°         2         1167         Na <sup>b</sup> <t< td=""><td>Cut off &lt;15<sup>a</sup></td><td>4</td><td>3274</td><td>93.0 (63.0-99.0)</td><td>91.0 (90.0-92.0)</td><td>10.2 (8.1-12.8)</td><td>0.08 (0.01-0.53)</td><td>130.0 (16.0-1057.0)</td><td>6.8</td><td>99.9</td></t<>                                                                                                                                                                                                                                                                                                                                                                                            | Cut off <15 <sup>a</sup>   | 4                       | 3274                            | 93.0 (63.0-99.0)                    | 91.0 (90.0-92.0)             | 10.2 (8.1-12.8)                             | 0.08 (0.01-0.53)                            | 130.0 (16.0-1057.0)                  | 6.8                                | 99.9                               |
| Christophic     Set     Info     Na <sup>n</sup> Christophil     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cut off > 2     1167     Na <sup>®</sup>                                                                                                                                                                                                                                                                                               | Cut off 15-25 <sup>a</sup> | 4                       | 2539                            | 93.0 (73.0-99)                      | 94.0 (91.0-96.0)             | 15.1 (9.5-23.9)                             | 0.07 (0.02-0.32)                            | 209.0 (36.0-1195.0)                  | 12.3                               | 99.9                               |
| Quantitative FIT         6         4218         94.0 (33.0-90)         91.0 (83.0-90)         10.7 (8.3-14.0)         0.07 (0.10-0.5)         165.0 (25.0-108.0)         7.8         99.9           Qualitative FIT         1         57.2         NA <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quantitative FIT         6         4218         94.0 (33.0-90)         91.0 (89.0-93)         10.7 (8.3-14.0)         0.7 (0.10-0.3)         165.0 (25.0-1086)         7.8         99.9           Qualitative FIT         1         572         NA <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cut off >25 <sup>a</sup>   | 2                       | 1167                            | NA <sup>b</sup>                     | NA <sup>b</sup>              | NA <sup>b</sup>                             | NA <sup>b</sup>                             | NA <sup>b</sup>                      | NA <sup>b</sup>                    | NA <sup>b</sup>                    |
| Qualitative FIT         1         572         N <sup>A</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qualitative FIT         1         572         N <sup>A</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quantitative FIT           | 6                       | 4218                            | 94.0 (73.0-99.0)                    | 91.0 (89.0-93.0)             | 10.7 (8.3-14.0)                             | 0.07 (0.01-0.35)                            | 165.0 (25.0-1086.0)                  | 7.8                                | 99.9                               |
| One FIT sample         6         4362         94.0 (3001.00)         91.0 (3003.00)         11.0 (8015.1)         0.06 (0.00-1.34)         182.0 (6.0-5382.0)         7.8         99.9           Two FIT sample         3         046         Na <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | One FT sample         6         4362         94.0 (30.0-100)         91.0 (90.0-30)         11.0 (80.0-15.1)         0.06 (0.00-1.34)         18.20 (60-5382.0)         7.8         99.9           Two FT samples         3         2046         NA <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Qualitative FIT            | 1                       | 572                             | NA <sup>b</sup>                     | NA <sup>b</sup>              | NA <sup>b</sup>                             | NA <sup>b</sup>                             | NA <sup>b</sup>                      | NA <sup>b</sup>                    | NA <sup>b</sup>                    |
| Two FIT samples         3         2040         Na <sup>N</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Two FIT samples         3         2040         Na <sup>®</sup> Scattering         Scattering <td>One FIT sample</td> <td>6</td> <td>4362</td> <td>94.0 (39.0-100)</td> <td>91.0 (90.0-93.0)</td> <td>11.0 (8.0-15.1)</td> <td>0.06 (0.00-1.34)</td> <td>182.0 (6.0-5382.0)</td> <td>7.8</td> <td>99.9</td>                                                                                                                                                                                                                                                                                                                                                                                                             | One FIT sample             | 6                       | 4362                            | 94.0 (39.0-100)                     | 91.0 (90.0-93.0)             | 11.0 (8.0-15.1)                             | 0.06 (0.00-1.34)                            | 182.0 (6.0-5382.0)                   | 7.8                                | 99.9                               |
| Three Fit Sample         2         1428         N <sup>A</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Three FIT samples         2         1428         NA <sup>®</sup> Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Two FIT samples            | 3                       | 2046                            | NA <sup>b</sup>                     | NA <sup>b</sup>              | NA <sup>b</sup>                             | NA <sup>b</sup>                             | NA <sup>b</sup>                      | NA <sup>b</sup>                    | NA <sup>D</sup>                    |
| Advance Meeplas         Ferritary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Advance/Neoplasi         Ferrit         66 (4.9-8.8)         0.55 (0.45-0.68)         1.20 (8.0-19.00)         66 (4.9-8.8)         0.55 (0.45-0.68)         1.20 (8.0-19.00)         46.9         93.20           Cut off 1-52*6         5         212         42.0 (32.0-54.0)         97.0 (95.0-98.0)         13.1 (9.2-18.6)         0.6 (0.5-0.72)         22.0 (15.0-31.0)         66.9         98.20           Cut off >25*6         3         182         NA*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Three FIT samples          | 2                       | 1428                            | NA <sup>b</sup>                     | NA <sup>b</sup>              | NA <sup>b</sup>                             | NA <sup>b</sup>                             | NA <sup>b</sup>                      | NA <sup>b</sup>                    | NA <sup>b</sup>                    |
| Cut off 15 <sup>a</sup> 7         3909         49.0 (38.0 + 6.0)         93.0 (90.0 + 9.4)         66.6 (4 - 8.8)         0.55 (0.45 - 0.8)         12.0 (8.0 + 1.0)         44.6         94.1           Cut off 15 - 25 <sup>a</sup> 5         2712         42.0 (32.0 + 5.4)         97.0 (95.0 + 9.6)         13.1 (9.2 + 18.6)         66.(0.5 - 0.7)         22.0 (15.0 - 31.0)         62.9         93.2           Cut off 15 - 25 <sup>a</sup> 3         13.2         N <sup>A</sup> N <sup>Ab</sup> N <sup>Ab</sup> N <sup>Ab</sup> N <sup>Ab</sup> N <sup>Ab</sup> 93.8           Qualitative FIT         4         1467         54.0 (27.0 - 7.0)         90.0 (87.0 - 9.5)         5.6 (3.6 - 8.7)         0.51 (0.27 - 0.5)         1.0 (4.0 - 31.0)         28.6         96.3           One FiT sample         1         57.6         5.0 (37.0 - 5.4)         93.0 (9.0 - 9.5)         5.6 (3.6 - 8.7)         0.51 (0.27 - 0.5)         1.0 (4.0 - 31.0)         8.2         9.3.7           Thore FiT sample         1         57.6         5.0 (3.0 - 5.6)         5.6 (3.6 - 8.7)         0.51 (0.27 - 0.5)         1.0 (4.0 - 31.0)         8.2         9.3.7           Thore FiT sample         1         57.6         N <sup>Ab</sup> N <sup></sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cut off < 15 <sup>a</sup> 7         3909         49.0 (38.0~60.0)         93.0 (90.0~94.0)         66.6 (4.9~8.8)         0.55 (0.45-0.68)         12.0 (8.0~19.0)         44.6         94.1           Cut off 15-25 <sup>a</sup> 5         2712         42.0 (32.0~54.0)         97.0 (95.0~98.0)         13.1 (92.18.6)         0.6 (0.5-0.72)         22.0 (15.0~31.0)         62.9         93.2           Cut off 15-25 <sup>a</sup> 3         1821         NA <sup>b</sup> <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Advanced Neoplasi          | a                       |                                 |                                     |                              |                                             |                                             |                                      |                                    |                                    |
| Cut off 15-25°         5         2712         42.0 (32.0-54.0)         97.0 (95.0-98.0)         13.1 (92.1-86.0)         06.0 (0.5-0.72)         22.0 (15.0-31.0)         62.9         93.2           Cut off 25°         3         1821         NA <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cut off 15-25*         5         2712         42.0 (32.0-54.0)         97.0 (95.0-98.0)         13.1 (9.2-18.6)         0.6 (0.5-0.72)         22.0 (15.0-31.0)         62.9         93.2           Cut off >25*         3         1821         NA <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cut off <15 <sup>a</sup>   | 7                       | 3909                            | 49.0 (38.0-60.0)                    | 93.0 (90.0-94.0)             | 6.6 (4.9-8.8)                               | 0.55 (0.45-0.68)                            | 12.0 (8.0-19.0)                      | 44.6                               | 94.1                               |
| Cut off > 25°         3         1821         NA <sup>®</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cut off > 25°         3         1821         NA <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cut off 15-25 <sup>a</sup> | 5                       | 2712                            | 42.0 (32.0-54.0)                    | 97.0 (95.0-98.0)             | 13.1 (9.2-18.6)                             | 0.6 (0.5-0.72)                              | 22.0 (15.0-31.0)                     | 62.9                               | 93.2                               |
| Quantitative FIT         8         47.37         47.0 (38.0~56.0)         94.0 (91.0~95.0)         7.3 (5.3-10.2)         0.57 (0.48-0.67)         13.0 (9.0-19.0)         47.9         93.8           Qualitative FIT         4         1467         54.0 (27.0~79.0)         90.0 (87.0~30.0)         56.3 (3.6*8.7)         0.51 (0.27-0.95.0)         11.0 (4.0~31.0)         28.6         96.3           One FIT sample         1         5776         45.0 (37.0~54.0)         93.0 (90.0~95.0)         6.2 (4.7-8.3)         0.59 (0.51-0.69)         11.0 (7.0-16.0)         42.2         93.7           Thore FIT sample         3         206         NA <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quantitative FIT         8         47.3         47.0 (38.0~56.0)         94.0 (91.0~95.0)         7.3 (5.3-10.2)         0.57 (0.48-0.67)         13.0 (9.0~19.0)         47.9         93.8           Qualitative FIT         4         1467         54.0 (27.0~79.0)         90.0 (87.0~93.0)         56.(3.6~8.7)         0.51 (0.27-0.95)         11.0 (4.0~31.0)         28.6         96.3           Open FIT sample         11         5776         45.0 (37.0~54.0)         90.0 (90.0~95.0)         6.2 (4.7~83.0)         59.0 (0.51-0.65)         11.0 (7.0~16.0)         42.2         93.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cut off >25 <sup>a</sup>   | 3                       | 1821                            | NA <sup>b</sup>                     | NA <sup>b</sup>              | NA <sup>b</sup>                             | NA <sup>b</sup>                             | NA <sup>b</sup>                      | NA <sup>b</sup>                    | NA <sup>b</sup>                    |
| Qualitative FIT         4         1467         54.0 (27.0~7.90)         90.0 (87.0~9.30)         5.6 (2.6~8.7)         0.51 (0.27.0~5.6)         11.0 (4.0~31.0)         28.6         96.3           One FiT sample         1         5776         56.0 (37.0~54.0)         93.0 (90.0~95.0)         6.2 (4.7-8.3)         0.59 (0.57.0~65)         11.0 (4.0~31.0)         22.         93.7           Thore FIT sample         3         2046         NA <sup>0</sup> <td>Qualitative FIT         4         1467         54.0 (27.0-79.0)         90.0 (87.0-93.0)         5.6 (3.6-8.7)         0.51 (0.27-0.95)         11.0 (4.0-31.0)         28.6         96.3           One FIT sample         11         5776         45.0 (37.0-54.0)         93.0 (90.0-95.0)         6.2 (4.7-8.3)         0.59 (0.51-0.69)         11.0 (7.0-16.0)         42.2         93.7</td> <td>Quantitative FIT</td> <td>8</td> <td>4737</td> <td>47.0 (38.0-56.0)</td> <td>94.0 (91.0-95.0)</td> <td>7.3 (5.3-10.2)</td> <td>0.57 (0.48-0.67)</td> <td>13.0 (9.0-19.0)</td> <td>47.9</td> <td>93.8</td>          | Qualitative FIT         4         1467         54.0 (27.0-79.0)         90.0 (87.0-93.0)         5.6 (3.6-8.7)         0.51 (0.27-0.95)         11.0 (4.0-31.0)         28.6         96.3           One FIT sample         11         5776         45.0 (37.0-54.0)         93.0 (90.0-95.0)         6.2 (4.7-8.3)         0.59 (0.51-0.69)         11.0 (7.0-16.0)         42.2         93.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Quantitative FIT           | 8                       | 4737                            | 47.0 (38.0-56.0)                    | 94.0 (91.0-95.0)             | 7.3 (5.3-10.2)                              | 0.57 (0.48-0.67)                            | 13.0 (9.0-19.0)                      | 47.9                               | 93.8                               |
| One FIT sample         11         5776         45.0 (37.0-54.0)         93.0 (90.0-95.0)         6.2 (4.7-8.3)         0.59 (0.51-0.69)         11.0 (7.0-16.0)         42.2         93.7           Two FIT samples         3         2046         NA <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | One FIT sample 11 5776 45.0 (37.0-54.0) 93.0 (90.0-95.0) 6.2 (4.7-8.3) 0.59 (0.51-0.69) 11.0 (7.0-16.0) 42.2 93.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Qualitative FIT            | 4                       | 1467                            | 54.0 (27.0-79.0)                    | 90.0 (87.0-93.0)             | 5.6 (3.6-8.7)                               | 0.51 (0.27-0.95)                            | 11.0 (4.0-31.0)                      | 28.6                               | 96.3                               |
| Two FIT samples         3         2046         NA <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | One FIT sample             | 11                      | 5776                            | 45.0 (37.0-54.0)                    | 93.0 (90.0-95.0)             | 6.2 (4.7-8.3)                               | 0.59 (0.51-0.69)                            | 11.0 (7.0-16.0)                      | 42.2                               | 93.7                               |
| Three FIT samples         2         1428         NA <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Two FIT samples 3 2046 NA <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Two FIT samples            | 3                       | 2046                            | NA <sup>b</sup>                     | NA <sup>b</sup>              | NA <sup>b</sup>                             | NA <sup>b</sup>                             | NA <sup>b</sup>                      | NA <sup>b</sup>                    | NA <sup>b</sup>                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Three FIT samples         2         1428         NA <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Three FIT samples          | 2                       | 1428                            | NA <sup>b</sup>                     | NA <sup>b</sup>              | NA <sup>b</sup>                             | NA <sup>b</sup>                             | NA <sup>b</sup>                      | NA <sup>b</sup>                    | NA <sup>b</sup>                    |

# **Diagnostic testing – ROC Curve**

A receiver operating characteristics curve, or ROC curve, is a graphical plot that illustrates the ability of a diagnostic test to discriminate between disease vs no disease according to possible



sensitivity



https://glassboxmedicine.com

# **Diagnostic testing ROC analysis - example**



Turenhout et al., BMC gastro 2014





|             | Variable                               | Adequate    | preparation | p-value |                 |
|-------------|----------------------------------------|-------------|-------------|---------|-----------------|
|             | Female                                 | 54.8%       | 48.4%       | 0.13    |                 |
|             | Age                                    | 55.9 ± 12.9 | 59.8 ± 12.8 | <0.01   |                 |
|             | BMI                                    | 27.2 ± 5.7  | 28.6 ± 7.2  | <0.01   |                 |
|             | Comorbidities<br>Museardial inferation | 2.6%        | 5.19/       | 0.08    |                 |
|             | Congestive heart failure               | 0.6%        | 0.7%        | 0.08    |                 |
|             | Peripheral vascular                    | 2.3%        | 3.9%        | 0.26    |                 |
|             | disease                                |             |             |         |                 |
|             | Cerebrovascular disease                | 1.5%        | 2.6%        | 0.30    |                 |
|             | Dementia                               | 0.3%        | 0.7%        | 0.40    |                 |
|             | disease                                | 0.3%        | 8.3%        | 0.12    |                 |
|             | Connective tissue disease              | 1.5%        | 2.6%        | 0.31    |                 |
|             | Ulcer disease                          | 3.7%        | 5.1%        | 0.38    |                 |
|             | Mild or moderate liver                 | 2.6%        | 1.9%        | 0.80    |                 |
|             | disease                                | 0.00/       | 10.50/      | -2.01   |                 |
|             | Diabetes<br>Moderate repai disease     | 6.8%        | 18.0%       | <0.01   |                 |
|             | Diabetes with end organ                | 0.3%        | 0.7%        | 0.44    |                 |
|             | damage                                 | 0.070       | 0.070       | 0.40    |                 |
|             | Any tumor                              | 8.5%        | 11.5%       | 0.21    |                 |
|             | Leukemia                               | 0.1%        | 0.0%        | 1.00    |                 |
|             | Lymphoma                               | 0.7%        | 1.9%        | 0.13    |                 |
|             | Metastaic solid tumor                  | 0.3%        | 0.6%        | 0.40    | Dationt         |
|             | Neurologic disorder                    | 2.4%        | 4.5%        | 0.18    | Faliciil        |
|             | Previous abdominal or                  | 38.0%       | 42.7%       | 0.25    | Characteriation |
|             | pelvic surgery                         |             |             |         | Characteristics |
|             | Charlson score                         |             |             |         |                 |
|             | French or English as a                 | 05.19/      | 02.6%       | 0.42    |                 |
| PREPARATION | primary language                       | 55.1%       | 53.6%       | 0.45    |                 |
|             | Highest degree of education            |             |             |         |                 |
|             | Patient requiring help for             | 0.8%        | 2.6%        | 0.06    |                 |
|             | bowel preparation instruction          |             |             |         |                 |
|             | at nome                                | 11.1%       | 14.8%       | 0.19    |                 |
|             | constipation (Rome III)                | 11.170      | 14.076      | 0.10    |                 |
|             | Functional constipation                | 10.2%       | 13.0%       | 0.28    |                 |
|             | (Rome III)                             |             |             |         |                 |
|             | Known IBD                              | 7.5%        | 6.1%        | 0.52    |                 |
|             | Narcotics or chronic layative          | 00.0%       | 12.9%       | 0.91    |                 |
|             | or medication induced                  | 11.070      | 12.070      | 0.00    |                 |
|             | constipation                           |             |             |         |                 |
|             | Indication                             |             |             |         |                 |
|             | Non screening                          | 35.1%       | 46.5%       | 0.02    |                 |
|             | Supeillance                            | 40.3%       | 20.4%       |         |                 |
|             |                                        |             |             |         |                 |
|             |                                        |             |             |         |                 |
|             |                                        |             |             |         |                 |
|             |                                        |             |             |         |                 |
|             |                                        |             |             |         |                 |
|             |                                        |             |             |         |                 |
|             |                                        |             |             |         |                 |
|             |                                        |             |             |         |                 |
|             |                                        |             |             |         |                 |
|             |                                        |             |             |         |                 |
|             |                                        |             |             |         |                 |
|             | Split dose (vs same-day)               | 67.0%       | 68.2%       | 0.78    | Interventions   |

# **Meta-analysis**

- Meta-analysis is the statistical combination of results from two or more separate studies
- Potential advantages of meta-analyses include an improvement in precision (brought about by larger sample sizes)
- effect estimates from the different studies.
- Variation across studies (heterogeneity) must be considered.
- Meta-analyses also have the potential to mislead seriously, particularly if specific study designs, within-study biases, variation across studies, and reporting biases are <u>not carefully considered</u>

Cochrane Handbook



| Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a ai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nal                                                                                                                                                                                                                                     | ysis:                                                                                  | Colonoscop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y preparations                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Experimental<br>Events Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cont<br>Events To                                                                                                                                                                                                                       | ol                                                                                     | OR 95%-CI W(random)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                         |
| Vanner et al. 1990<br>Frontative terministic and the second | 18         54           27         34           60         70           90         143           33         39           15         18           68         100           75         91           76         123           52         88           30         40           14         177           184         207           177         192           27         32           103         144           177         192           27         32           209         220           209         209           209         209           209         209           48         55           61         95 | 38<br>37<br>66<br>141<br>25<br>125<br>88<br>28<br>88<br>28<br>41<br>380<br>41<br>33<br>166<br>41<br>335<br>167<br>24<br>355<br>1<br>31<br>31<br>31<br>31<br>35<br>131<br>49<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 |                                                                                        | 0.13 [005 0.32] 2.9%<br>4.38 [171;1122 2.5%<br>0.64 [01:176] 2.7%<br>1.36 [171;1122 2.5%<br>0.64 [01:176] 2.7%<br>1.36 [171;23] 2.7%<br>0.67 [157;23:30] 2.1%<br>0.67 [157;23:30] 2.1%<br>2.73 [168;444] 3.6%<br>2.73 [168;444] 3.6%<br>2.73 [169;425] 3.1%<br>5.07 [255;10.06] 3.2%<br>0.64 [022;124] 3.2%<br>0.64 [022;124] 3.2%<br>1.65 [106;322] 3.5%<br>1.68 [106;32] 2.6%<br>1.64 [106;32] 2.2%<br>1.64 [106;32] 2.2%<br>1.64 [106;32] 2.2%<br>1.64 [106;32] 2.2%<br>1.64 [106;32] 2.2%<br>1.64 [106;32] 2.2%<br>1.64 [106;32] 2.5%<br>1.64 [106;32] 2.5%<br>1.64 [106;32] 3.5%<br>1.64 [106;32] | Data extracted from the 2x2 table<br>(dichotomized outcome) for each<br>study         Weight of each individual study<br>(also related to size of box)         If the p-value<0.10, the test is<br>considered to be heterogeneous<br>(variation in study outcomes<br>between studies), a random effect<br>model is needed. Otherwise, a |
| Marmo et al. 2010<br>Rex et al 2010<br>Samarasena et al. 2012<br>Fierming et al. 2012<br>Cessuro et al. 2013<br>Voiosu et al. 2013<br>Rex et al. 2013<br>Random effects model<br>Heterogeneily: Fequard-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 327 448<br>62 68<br>83 105<br>160 168<br>107 127<br>24 51<br>256 305<br>63 94<br>1 4166<br>.856 sur-squared-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 186 4<br>60 1<br>156 1<br>74 1<br>32<br>221 2<br>49<br>40<br>0.5937, P<.00                                                                                                                                                              | 47<br>18<br>17<br>17<br>18<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 3.79 [286 5.02] 3.84<br>1.38 [0.45, 421] 2.0%<br>10.94 [545 2548] 3.4%<br>154 [155 6.45] 3.4%<br>0.56 [0.25 1:22] 3.1%<br>1.82 [122 2.72] 3.1%<br>1.58 [0.86; 2.88] 3.4%<br>2.51 [1.86; 3.39] 100%<br>0 Split-dosing better                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fixed effect model will be preferred                                                                                                                                                                                                                                                                                                    |







# Conclusion

- Inferential testing with assumptions about the sample distributions; choosing the correct inferential test
- Hypothesis testing: significance, statistical power, types I/II errors
- Probabilities vs Odds ratios; absolute/relative risks; NNT/H/S Diagnostic testing, ROC analysis
- Confounding and adjusting for confounding
- Meta-analyses
- HOPE THIS HELPS MAKE SENSE OF SOME OF YOUR READINGS!