

# An Introduction to Useful Statistics When Clinicians are Reading the Medical Literature 

Alan Barkun, MD,CM, FRCP(C), FACP, FACG, AGAF, MSc (Clinical Epidemiology)
Chairholder, Douglas G. Kinnear Chair in Gastroenterology
Professor of Medicine
McGill University and the McGill University Health Centre
Montreal, QC

## Aim / Disclaimer

I am NOT a statistician!
I did not really want to present this talk to you but was coerced into doing so (although I did volunteer for it) My aim is NOT to make statisticians out of you (especially since I am not one myself)

My aim is to:
HELP YOU MAKE SENSE OF THE EVER-INCREASING VOLUME OF PUBLISHED LITERATURE AND SEEMINGLY COMPLEX NATURE OF THE STATISTICS THAT ARE USED TO UNDERSTAND RESULTS - I will stick to a few selected concepts -

## Outline

The role of statistics: Inferential testing and sample distributions; choosing the correct inferential test
Hypothesis testing: Significance, statistical power, types I and II errors
Probabilities vs Odds ratios
Absolute and relative risks; number needed to treat/harm/screen
Diagnostic testing, ROC analysis
Confounding and adjusting for confounding
Meta-analyses

## Inferential testing



htpps $/$ www.bing.com/mages/searchrview=detail v2\&ccid=N5YNTOwB\&id=E45388EDDB16EFA67AEB6245DFDF3B69D8057891\&thid=OIP.N5YNTOwBxrWqWEZA8U7CTAHaEK\&mediaurl=https\%/3a\%2
 $20 \& e x p w=1280 \& q=$ normal + distribution\&simid $=608012170561724848 \&$ ck $=9 \mathrm{D} 7 \mathrm{D} 850 \mathrm{BAD} 70876 \mathrm{FEC} 8 \mathrm{CB} 6 \mathrm{E} 61 \mathrm{D} 75 \mathrm{E} 38 \mathrm{D} \&$ selectedIndex $=7 \& F O R M=$ IRPRST\&ajaxhist $=0$

## Confidence Intervals

```
Comparison of
2 treatments:
Difference in response
rates between Drug X and Drug Y
Nul hypothesis is no
difference between
the 2 Difference \(=0\)
Eg: X 20\% (13-32\%) and
Y 30\% (25-45\%),
difference 10\% (6-17\%)
but clinically significant difference
is also relevant - if for eg 5\% or 20\%
```


## Interpretation of Confidence intervals



Range of clinical indifference
\(\left.$$
\begin{array}{l}\text { Range of clinical indifference }\end{array}
$$ \begin{array}{l}Statistically significant but no <br>

practical significance\end{array}\right\}\)| Statistically significant and |
| :--- |
| Range of clinical indifference |$\longrightarrow 4$

## The sample distribution

The sample distribution may be considered as the distribution of the statistic for all possible samples from the same population of a given sample size
Making assumptions about the "studied population distribution" as a sample of the "whole population", you can make assumptions and adopt certain formulas when performing inferential testing statistics
This decision also depends on a number of additional factors

## Choosing the correct test - Is there a difference


https:/ / stats.idre.ucla.edu/other/mult-pkg/whatstat/

## The name of the game: "Inferential testing"



## Hypothesis testing

The statistical practice of hypothesis testing is widespread Hypothesis testing:

- the statement of a null hypothesis (Eg: the study drug is no better than placebo or control drug)
- the null hypothesis is either true or false

Making a statistical decision always involves uncertainties, so the risks of making these errors are unavoidable in hypothesis testing There are two kinds of errors, which by design cannot be avoided as a result

## Significance value and type I error

If your results show statistical significance, that means they are very unlikely to occur if the null hypothesis is true Alpha $(\alpha)$ is the significance value which is typically set at 0.05 , this is the cut off at which we accept or reject the null hypothesis. Making $\alpha$ smaller ( $\alpha=0.1$ ) makes it harder to reject the H0 Interpretation of $\mathrm{P}<0.05$ would be: drug $\mathrm{X}>\mathrm{drug} \mathrm{Y} 19$ out of 20 times you would run the same study
In this case, you would reject your null hypothesis; but sometimes, this may actually be a Type I error (find a difference when in fact there is none)

## Statistical power and type II error

If your findings do not show statistical significance, they have a high chance of occurring if the null hypothesis is true
The statistical power of a study $(1-\beta)$ is the probability of correctly rejecting the null hypothesis (when the null hypothesis is not true)
The adopted statistical power is usually $80 \%$ or $90 \%$
Therefore, you fail to reject your null hypothesis; but sometimes, this may be a Type II error - so a 10-20\% chance of falsely concluding that Drug B is no different than drug A
The statistical power increases with effect size and sample size

## Type I and Type II errors

## TRUTH




## Probability versus Odds

Probability:


The probability is defined as the number of time an event will occurs divided by the number of all possible events

Odds:


The odds are defined as the probability that the event will occur divided by the probability that the event will not occur.

## Probability

## Relative risk / Risk ratio (RR)

- The probability of having cancer (event)

|  | Cancer | No cancer |
| :--- | :---: | :---: |
| Treatment | a | b |
| Control | c | d | in the treatment group is $a /(a+b)=R 1$

- The probability of cancer (event) in the control group is $c /(c+d)=R 2$
- The ratio of these two probabilities $\mathrm{R} 1 / \mathrm{R} 2$ is the relative risk or risk ratio

$$
R R=\frac{\text { Risk of event in the Treatment group }}{\text { Risk of event in the Control group }}=\frac{\mathrm{a} /(\mathrm{a}+\mathrm{b})}{c /(c+d)}
$$

## Odds ratio

## Odds Ratio (OR)

|  | Cancer | No cancer |
| :--- | :---: | :---: |
| Treatment | a | b |
| Control | c | d |

- The odds ratio is the ratio of the odds of an event in the treatment group over the odds of an event in the control group
- It is equivalent to the probability of an event divided by the probability of a non-event

$$
O R=\frac{\text { Odds of event in Treatment group }}{\text { Odds of event in Control group }}=\frac{\mathrm{a} / \mathrm{b}}{c / d}=\mathrm{ad} / \mathrm{bc}
$$

## Probability - OR and RR

OR are numerically different from the RR (even if they both compare the same risk between the same group), the relation is nonlinear
$O R$ and $R R$ are similar when the event is rare in the control group

- $R R=0.15$ - the intervention is reduced the risk by $85 \%$
- OR=0.15 - for every 15 persons who experience the event in the treatment group, 100 subjects will experience the event in the control group

You may also hear about Hazard ratio (HR) which is a measure of an effect of an intervention on an outcome of interest over time. Hazard ratio is reported most commonly in time-to-event analysis or survival analysis

## Probability - OR and RR

## We use OR in 2 principal situations

- In case-control studies (subjects with the outcome of interest are matched with a control group who do not) - where the absolute risk (or relative risk) cannot be estimated
- In logistic regression analyses (models the probability of an event/outcome existing such as success/failure by adjusting for independents variables) where OR are generated as part of the analysis



## Absolute Risk vs Relative Risk



## Number Needed to Treat / Harm

The Number needed to Treat (NNT) is simply the inverse of the ARR; can be calculated by dividing 100 by the ARR in \% NNT = 100/ARR
Note that this is useful if only calculated for a statistically significant difference, and that too has a confidence range May be especially useful when explaining to patients

Other closely related entities:
Number Needed to Harm (NNH) (100/AR increase)
Number Needed to Screen (NNS) (100/ARR)

## PPI side effects... if in fact they are causally related, which most are NOT!...

Table 3.Absolute and RRs for Adverse Effects Associated With Long-Term PPIs

| Potential Adverse Effect | Relative Risk | Reference for Risk Estimate | Reference for Incidence Estimate | Absolute Excess Risk |
| :---: | :---: | :---: | :---: | :---: |
| Chronic kidney disease ${ }^{\text {a }}$ | 10\% to 20\% increase | Lazarus et al ${ }^{48}$ | Lazarus et al ${ }^{48}$ | 0.1\% to 0.3\% per patienty |
| Dementia ${ }^{\text {b }}$ | 4\% to 80\% increase | Haenisch et al ${ }^{90}$ | Haenisch et al ${ }^{90}$ | . $07 \%$ to $1.5 \%$ per patienty |
| Bone fracture ${ }^{\text {c }}$ | 30\% to 4-fold increase | Yang et $\mathrm{al}^{27}$ | Yang et $\mathrm{al}^{27}$ | 0.1\% to $0.5 \%$ per patienty |
| Myocardial infarction | No association in RCTs | - | - | - |
| Small intestinal bacterial overgrowth | 2 -fold to 8-fold increase | Lo et al ${ }^{91}$ | None available | Unable to calculate |
| Campylobacter or Salmonella infection | 2-fold to 6-fold increase | Bavishi et al ${ }^{26}$ | Crim et al ${ }^{92}$ | . $03 \%$ to $0.2 \%$ per 9.4 |
| Spontaneous bacterial peritonitis ${ }^{d}$ | 50\% to 3-fold increase | Xu et al ${ }^{93}$ | Femandez et al ${ }^{94}$ | 3\% to $16 \%$ per f |
| Clostridium difficile infection ${ }^{\text {e }}$ | No risk to 3-fold increase | Furuya et al ${ }^{95}$ | Lessa et al ${ }^{96}$ | 0\% to .09\% per pat |
| Pneumonia | No association in RCTs | - | - | - |
| Micronutrient deficiencies ${ }^{\text {f }}$ | 60\% to 70\% increase | Lam et al ${ }^{97}$ | Bailey et al ${ }^{98}$ | 0.3\% to 0.4\% per patient) |
| Gastrointestinal malignancies | No association in RCTs | - | - | - |

NNH = 1 in 100-1,500 (need to take PPI for 1 possible s/e)
vs NNT $=1$ in 10-20 for benefit in an approved indication

Vaezi, Gastro, 2017

## Diagnostic testing

Diagnostic testing applies to everything a physician does in order to diagnose a disease or make a clinical decision (i.e.: diagnosis).

## From a statistical point of view

- the clinical decision-making process is based on probabilities
- the goal of a diagnostic test is to move the estimated probability of disease / event toward either end of the probability scale (i.e., "0" when ruling out/ excluding disease, and "1" when ruling in / confirming a disease / event)


## Diagnostic testing - 2x2 table

| New diagnostic test under study |  | Gold or reference standard |  |
| :---: | :---: | :---: | :---: |
|  |  | Disease | No Disease |
|  | Test Positive | A <br> True positives | B <br> False positives |
|  | Test Negative | C False negatives | D <br> True negatives |

The gold standard is the best single test (or a combination of tests) that is considered the current preferred method of diagnosing a particular disease. Gold Standards are used to define true disease status against which the results of a new diagnostic test are compared. A reference standard is the closest gold standard that we have; for example, Colonoscopy is a reference standard (since there is a possibility of missing lesions)

## Diagnostic testing - Sensitivity

|  |  |  |
| :--- | :--- | :--- |
|  | Disease | No Disease |
| Test Positive | A | B |
| Test Negative | True positives | False positives |
|  | C | D |
|  | False negatives | True negatives |
|  |  |  |
|  |  |  |

Sensitivity is the probability that an individual with the disease of interest has a positive test (expressed in \%)

Sensitivity $=a /(a+c)$

## Diagnostic testing - Specificity

|  |  | Disease |
| :--- | :--- | :--- |
| Test Positive | A | No Disease |
| Test Negative | True positives | B |
|  | Calse positives |  |
|  |  | False negatives |

Specificity is the probability that an individual without the disease of interest has a negative test (expressed in \%)

Specificity = d/(b+d).

## Diagnostic testing - Accuracy



Accuracy is the probability that the diagnostic test yields the correct determination with regards to presence of the disease

Accuracy $=(a+d) /(a+b+c+d)$

## Diagnostic testing - Positive Predictive Value



Positive Predictive Value (PV+) is the probability of disease in an individual with a positive test result

Positive Predictive Value: $\mathrm{a} /(\mathrm{a}+\mathrm{b})$

## Diagnostic testing - Negative Predictive Value

|  | Disease | No Disease |
| :--- | :--- | :--- |
| Test Positive | A | B |
|  | Trıe nositives | False positives |
| Test Negative | C | D |
|  | False negatives | True negatives |

Negative Predictive Value (PV - ) is the probability of not having the disease when the test result is negative

Negative Predictive Value : d/(c+d)

## Diagnostic testing - Prevalence

|  | Disease | No Disease |
| :--- | :--- | :--- |
| Test Positive | A | B |
|  | True positives | False positives |
|  | C | D |
|  | False negatives | True negatives |
|  |  |  |

Prevalence is the probability of having the disease, also called the "prior probability" of having the disease

Prevalence: $(a+c) /(a+b+c+d)$

## FIT test performance



## Diagnostic testing - ROC Curve

A receiver operating characteristics curve, or ROC curve, is a graphical plot that illustrates the ability of a diagnostic test to discriminate between disease vs no disease according to possible thresholds


1- specificity

## Diagnostic testing ROC analysis - example



[^0]immunochemical test; CRC = colorectal cance $A U C$-area under the curve

## Logistic Regression model dependent versus independent variable

Example of a study assessing rebleeding in patients with lower GI bleeding


A dependent variable is the variable being tested and measured in an experiment/study for a given outcome/endpoint.
You can have outcomes such as mortality, complications, quality of life, satisfaction...


Independent variables are variables that can be changed or controls and are assumed to have a direct effect on the dependent variable (Demographics/labs/interventions)

## Logistic Regression model

The logit of the multiple logistic regression model is given by the equation:
Logic $\mathrm{Y}(\mathrm{x})=\ln \frac{p}{(1-P)}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{p} x_{p}$


## Meta-analysis

Meta-analysis is the statistical combination of results from two or more separate studies
Potential advantages of meta-analyses include an improvement in precision (brought about by larger sample sizes)

Meta-analyses also have the potential to mislead seriously, particularly if specific study designs, within-study biases, variation across studies, and reporting biases are not carefully considered

## Meta-analysis

| Steps | Steps to conduct a meta-analysis |
| :---: | :--- |
| 1 | Specify the question to be answered (PICO) |
| 2 | Define the inclusion and exclusion criteria |
| 3 | Conduct a systematic review of the literature and <br> identify all the relevant citations |
| 4 | Data extraction for selected articles |
| 5 | Evaluate the risk of bias of studies |
| 6 | Conduct statistical analyses |
| 7 | Conclude and assess the limit of the meta-analysis |



All meta-analyses should be registered in Prospero
https://www.crd.york.ac.uk/prospero/

## Meta analysis: Colonoscopy preparations



## Colonoscopy

 prepsLine of unity (OR=1); if
overlapped study result is not significant

| Study | Experim Events | ental | Con | Thtrol |  |  | OR | 95\%-Cl | ndom) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vanner et al 1990 | 18 | 54 | 38 | 48 | -불- |  | 0.13 | [0.05; 0.32] | 29\% |
| Paotur et al 1993 | 51 | 80 | 45 |  |  |  | 1.37 | [0.73; 2.58] | 3.4\% |
| Kots et al 1993 | 27 | 34 | 37 | 79 |  | - | 4.38 | [1.71: 11.22] | 29\% |
| Marshal et al 1993 | 60 | 70 | 66 | 73 |  |  |  | [0.23; 1.78] | 27\% |
| Cohen et al 1994 | 90 | 143 | 141 | 279 |  |  | 1.66 | [1.10; 2.51] | 37\% |
| Chia etat 1995 | 33 | 39 | 25 | 40 |  |  | 3.30 | [1.12; 9.72] | 26\% |
| Unal et al. 1998 | 15 | 18 | 12 | 28 |  | + | 6.67 | [1.57; 28.36] | 2.1\% |
| Arezzo et al 2000 | 68 | 100 | 88 | 200 |  | 靊 | 270 | [1.63, 4.48] | 3.6\% |
| Young et al. 2000 | 131 | 169 | 86 | 154 |  |  | 2.73 | [1.68; 4.41] | 3.6\% |
| El sayed et al 2003 | 75 | 91 | 68 | 96 |  |  | 2.13 | [1.07, 4.25] | 3.3\% |
| Tasci et al 2003 | 510 | 517 | 380 | 436 |  | 퓰 | 10.74 | [4.84, 23.82] | 3.1\% |
| Elletal 2003 |  | 123 | 15 | 62 |  | + | 5.07 | [255, 10.06] | 3.3\% |
| Aounetal 2005 | 52 | 68 | 41 | 73 |  |  | 2.54 | [1.23, 5.24] | $32 \%$ |
| Hwang et al 2005 | 30 | 40 | 33 |  |  |  | 0.64 | [0.22, 1.88] | 26\% |
| Parra-Blanco et al 2006 | 36 | 45 | 15 | 89 |  | - | 19.73 | [7.88; 49.39] | 29\% |
| Wruble et al 2007 | 144 | 171 | 50 | 68 |  |  | 1.92 | [ $0.98,3.78$ ] | 3.3\% |
| Johanson et al 2007 | 184 | 207 | 169 | 208 |  |  | 1.85 | [1.06; 3.22] | 3.5\% |
| Abdul-8aki ef al 20081 | 177 | 199 |  | 183 |  | 툴 | 10.83 | [ 6 37, 18.42] | $3.5 \%$ |
| Worthington et al. 2008 |  | 32 | 24 | 33 |  |  | 2.02 | [0.60; 6.88] | 24\% |
| Chen TA el al. 2009 | 103 | 140 | 35 | 136 |  | 풀 | 8.03 | [4.69, 13.75] | 3.5\% |
| Maik et al 2009 | 74 | 80 | 31 | 41 |  |  | 3.98 | [1.33; 11.90] | 26\% |
| Corporaal et al 2010 | 209 | 220 |  | 87 |  |  | 2.47 | [1.01; 6.04] | 2.9\% |
| Cohen et al 2010 | 48 | 55 | 49 | 55 |  |  | 0.84 | [0.26; 268] | 25\% |
| Paik SS et al 2010 | 61 | 95 | 40 | 95 |  |  | 2.47 | [1.37, 4.43] | 3.5\% |
| Marmo etal 2010 | 327 | 448 | 186 | 447 |  | \# | 3.79 | [286, 5.02] | 3.8\% |
| Rex et al 2010 | 62 | 68 | 60 | 68 |  |  | 1.38 | [0.45; 4.21] | 26\% |
| Samarasena et al 2012 | 83 | 105 | 30 | 117 |  | 뀬 | 10.94 | [5.84; 20.48] | 3.4\% |
| Marno et al 2012 | 160 | 168 | 156 | 168 |  |  | 1.54 | [0.61; 3.87] | 2.9\% |
| Flemming et al. 2012 | 107 | 127 |  | 123 |  |  | 3.54 | [1.95; 6.45$]$ | 3.4\% |
| Cesaro et al 2013 | 24 | 51 | 32 | 52 |  |  | 0.56 | [0.25, 1.22] | 3.1\% |
| Rex et al 2013 | 256 | 305 | 221 | 298 |  |  | 1.82 | [1.22; 2.72] | 3.7\% |
| Voiosu et al 2013 | 63 | 94 |  | 87 |  |  | 1.58 | 10.86; 2.88] | 3.4\% |
|  |  |  |  |  |  |  | 2.51 | [1.86; 3.39] | 100\% |
| Split-dosing worse |  |  |  |  | $\begin{array}{r} 0.10 .5210 \\ \text { Odds Ratio } \end{array}$ |  | Split-dosing better |  |  |

## Overall OR and 95\%Cl;it is significant as does not overlap OR=1

## GRADE

Welcome to the GRADE working group

From evidence to recommendations - transparent and sensible


## Conclusion

Inferential testing with assumptions about the sample distributions; choosing the correct inferential test
Hypothesis testing: significance, statistical power, types I/II errors
Probabilities vs Odds ratios; absolute/relative risks; NNT/H/S
Diagnostic testing, ROC analysis
Confounding and adjusting for confounding
Meta-analyses

```
HOPE THIS HELPS MAKE SENSE OF SOME OF YOUR
READINGS!
```


[^0]:    Figure 2 Receiver operating characteristic curve of FIT for detection of CRC. ROC $=$ receiver operating characteristic; $\mathrm{FIT}=$ faecal

