
The Management of Chronic Stable Angina

G. Thanassoulis, MD MSc FRCPC
Director, MUHC Preventive and Genomic Cardiology
Associate Professor of Medicine
McGill University

- Objectives
 Understand the pathophysiology of chronic stable angina as well as its symptoms
- Review the evaluation and medical management of chronic stable angina using standard antianginal therapies
- Review emerging antianginal therapies and understand the indication for invasive treatment strategies

Case - Ms. C. Pain

- 56 F with retro-sternal chest pain on effort x3 months
- Hypertensive and dyslipidemic. Nonsmoker. Family history ++

 Meds: Lipitor 20 mg po die, Coversyl 4 mg po die.

Is it Angina?

- 3 criteria:
 - 1. Retrosternal discomfort, usually reproducible
 - 2. Onset with effort
 - 3. Ceases with rest (or with NTG)
- Typical angina: 3/3
- "Atypical" chest pain: 2/3
- "Non-anginal" chest pain: 0-1/3

Stable or Unstable?

Stable

- Retrosternal pain reproducible and predictable
- > 3 months
- No change in symptoms

Unstable

- · Pain at rest
- Crescendo angina
- New angina (CCS class III-IV)
- Post-revascularisation

Stable or Unstable?

Stable

- Retrosternal pain reproducible and predictable
- > 3 months
- No change in symptoms

Office

Unstable

- Pain at rest
- Crescendo angina
- New angina (CCS class III-IV)
- Post-revascularisation

EMERGENCY

Ms. C. Pain

- She feels chest tightness each time she climbs the stairs at work and at home
- ++ Breathlessness. After a short rest, the feeling disappears in 3-5 minutes
- No change in symptoms recently
- No pain at rest

What is the probability that she has obstructive CAD?

Probability of Stable CAD

TABLE I
Pretest Likelihood for CAD*

Age	Group TA	Group AA	Group NA	Group AS	
Males					
60-69	0.943 ± 0.004	0.671 ± 0.013 0.281 ± 0.019		0.123 ± 0.005	
50-59	0.920 ± 0.006	0.589 ± 0.015	0.215 ± 0.017	0.097 ± 0.004	
40-49	0.873 ± 0.010	0.461 ± 0.018	0.141 ± 0.013	0.055 ± 0.003	
30-39	0.697 ± 0.032	0.218 ± 0.024	0.052 ± 0.008	0.019 ± 0.003	
Females					
60-69	0.906 ± 0.010	0.544 ± 0.024	0.186 ± 0.019	0.075 ± 0.006	
50-59	0.794 ± 0.024	0.324 ± 0.030	0.084 ± 0.012	0.032 ± 0.004	
40-49	0.552 ± 0.065	0.133 ± 0.029	0.028 ± 0.007	0.010 ± 0.002	
30-39	0.258 ± 0.066	0.042 ± 0.013	0.008 ± 0.003	0.003 ± 0.001	

^{*} Each value represents the a priori probability for coronary artery disease (CAD) ± 1 standard error. TA, typical angina; AA, atypical angina; NA, nonanginal pain; AS, asymptomatic.

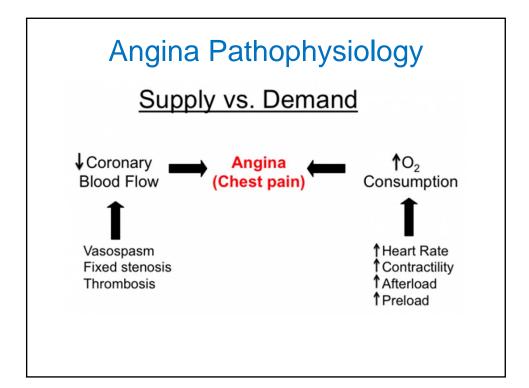
Diamond GA et al. JACC 1983

Ms. C. Pain

- Completed 8 mins Bruce protocol.
 Developed typical angina but stopped test because of fatigue.
- 1 mm depression in V5 and V6. No BP drop. No arrhythmias.
- Hypokinesis of inferior wall and apical anterior segment with exercise. LVEF 50%
- Symptoms and ECG normalise after 2 minutes of rest.

How should she be treated? Does she need PCI?

Summary: Ms. C. Pain

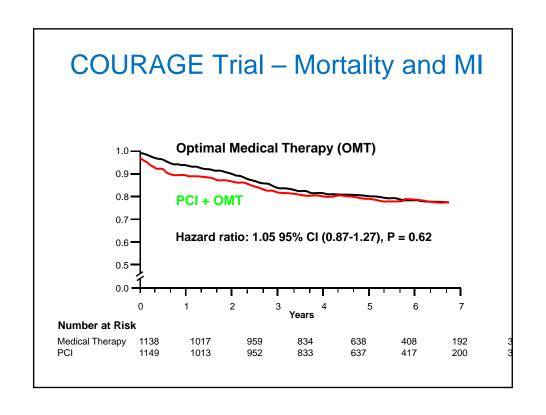

- Typical angina
- Completed 8 minute stress test
- 2-vessel disease (right coronary and distal LAD) based on stress-echo
- Good LVEF

Ms. C. Pain

- Normal examination
- BMI 26 kg/m²
- BP: 145/85
- LDL 2.8 mmol/L
- Glycemia normal

Stable CAD Treatment

- Medical
- Revascularisation
 - Percutaneous coronary intervention
 - Bypass surgery



Goals of Treatment

- There are 3 goals in treatment
 - Prevent death and MI
 - Minimise symptoms
 - Slow atherosclerosis progression
- Medical treatment of stable CAD is first line
 - Revascularisation is only for patients at very high-risk

Revascularisation

- Reduces mortality (only if):
 - Left main or equivalent
 - 3-vessel with LVEF <50%
 - 2-vessel (proximal LAD) with LVEF < 50% or large ischemic territory
 - Proximal LAD with LVEF < 50% or large ischemic territory
- Symptomatic control
 - Symptoms refractory to medical treatment (> 2 antianginal agents)

Lifestyle Modification

- Smoking cessation
- Dietary change
- Increase physical activity
- Cardiometabolic management

Cardiac rehabilitation programme

Medical therapy

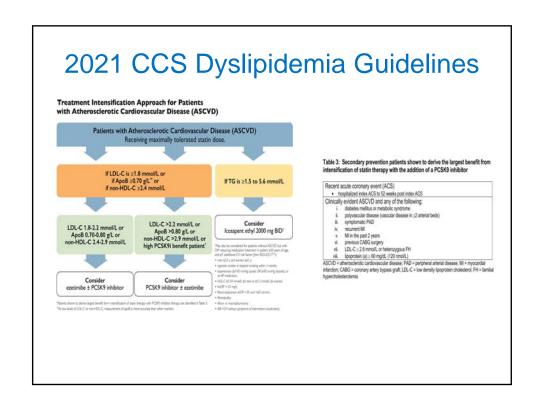
Atherosclerosismodifying drugs

- ECASA (other antiplatelets)
- Statins (ezetimibe and PCSK9i)
- ACE-I (ARBs)
- Icosapent ethyl
- Oral hypoglycemic agents (if diabetes)

Anti-anginal therapies

- Beta-blockers
- Calcium-channel blockers
- Nitrates
- Ranolazine
- Other agents (e.g. nicorandil, trimetazidine)

ECASA

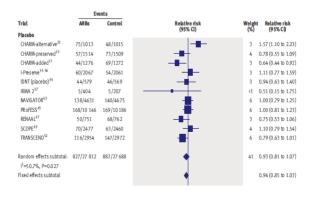

- All patients with stable CAD (unless intolerant/allergic)
- ECASA 81 mg daily
- 33% reduction in vascular events

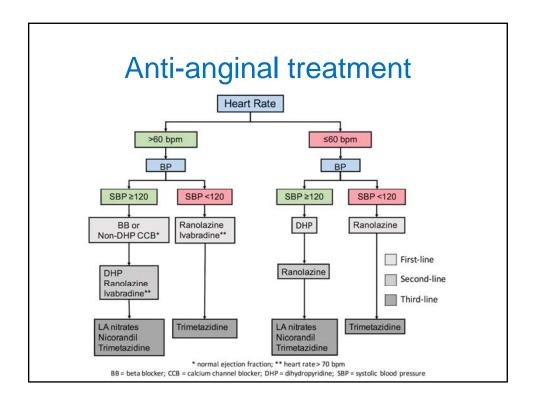
Statins

- All patients with stable CAD
- Maximally-tolerated dose
- Intensify treatment if LDL > 1.8 on max tolerated dose
 - Consider ezetimibe and/or PCSK9i
- For each 1mmol/L of LDL reduction = 20% mortality reduction

Icosapent ethyl

- Highly-purified eicosapentanoic acid formulation (omega-3 fatty acid)
- Patients with CAD and TGs ≥ 1.5-5.6 mmol/L
- anti-atherosclerosis effect/plaque stabilization
- 25% RRR in CV events
- Dose: IPE 2 grams BID




ACEi

- Reduce BP (target <130/80)
- Little effect on symptoms
- Reduce CV events <u>if HTN, DM2, LVEF <</u> 40% or CKD
 - 14% mortality reduction for select patients
 - Additional effect beyond the antihypertensive effect

ARB

- Indicated only if ACEi not tolerated
- No MI, CV or all-cause mortality benefit

Beta-Blockers

- All patients
 - 1st line therapy to <u>reduce symptoms if HR ></u>
 60 bpm
 - Reduces mortality (only if)
 - LVEF < 35%
 - History of prior MI (for 1-3 years)

Calcium Channel Blockers

- Non-dihydropiridine CCBs (e.g. diltiazem)
 - Can be used instead of BB as 1st line (only if normal LVEF)
- Dihydropiridine CCBs (e.g. amlodipine)
 - 1st line agent if HR < 60 bpm
 - 2nd line agent to be added to BB therapy for persistent angina
- CCBs <u>only reduce symptoms</u> (no mortality reduction)

Nitrates

- All patients should have a NTG spray
 - Use as needed
 - Use preventively
- Long-acting nitrates (patch or tablets) should be used as a last resort
 - Elderly patients with adequate BP
 - Revascularisation not possible or desired

Ranolazine

- 2nd or 3rd line anti-anginal agent for refractory cases
- Late Na+ channel blocker
- Ranolazine 500 mg bid
- Improves anginal symptoms only

Ivabradine

- Reduces heart rate <u>without</u> drop in blood pressure
- I_f channel inhibitor found in pacemaker cells of the heart
- May reduce angina <u>but may increase CV</u> events
- Not approved in Canada for angina

Conclusions

- Stable angina is a clinical diagnosis
- Stress testing is helpful for diagnosis and prognosis
- Imaging tests can detect patients at high-risk
- Vast majority of stable CAD patients need medical therapy only NOT revascularization
 - Lifestyle change and cardiac rehabilitation programs
 - ASA, BB and/or CCB, statins are first-line

Thank you

Questions?

ARB vs ACE

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Total mortality	8	5201	Risk Ratio (M-H, Fixed, 95% CI)	1.05 [0.91, 1.22]
2 Cardiovascular mortality	4	4131	Risk Ratio (M-H, Fixed, 95% CI)	1.08 [0.91, 1.28]
3 Non-cardiovascular mortality	4	4131	Risk Ratio (M-H, Fixed, 95% CI)	0.94 [0.66, 1.34]
4 MI	2	3874	Risk Ratio (M-H, Fixed, 95% CI)	1.00 [0.62, 1.63]
5 Stroke	1	3152	Risk Ratio (M-H, Fixed, 95% CI)	1.63 [0.77, 3.44]
6 Total hospitalisations	3	4310	Risk Ratio (M-H, Fixed, 95% CI)	1.00 [0.92, 1.08]
7 Hospitalisations for heart failure	3	4310	Risk Ratio (M-H, Fixed, 95% CI)	0.96 [0.83, 1.11]
8 Other hospitalisations	3	4310	Risk Ratio (M-H, Fixed, 95% CI)	1.03 [0.92, 1.15]